"Use a representative of each, e.g. sort the string and add it to the value of a hashmap> where we put all the words that belong to the same anagram together."
Gaston B. - "Use a representative of each, e.g. sort the string and add it to the value of a hashmap> where we put all the words that belong to the same anagram together."See full answer
"Initialize left pointer: Set a left pointer left to 0.
Iterate through the array: Iterate through the array from left to right.
If the current element is not 0, swap it with the element at the left pointer and increment left.
Time complexity: O(n). The loop iterates through the entire array once, making it linear time.
Space complexity: O(1). The algorithm operates in-place, modifying the input array directly without using additional data structures.
"
Avon T. - "Initialize left pointer: Set a left pointer left to 0.
Iterate through the array: Iterate through the array from left to right.
If the current element is not 0, swap it with the element at the left pointer and increment left.
Time complexity: O(n). The loop iterates through the entire array once, making it linear time.
Space complexity: O(1). The algorithm operates in-place, modifying the input array directly without using additional data structures.
"See full answer
Machine Learning Engineer
Data Structures & Algorithms
+4 more
🧠 Want an expert answer to a question? Saving questions lets us know what content to make next.
"#include
// Naive method to find a pair in an array with a given sum
void findPair(int nums[], int n, int target)
{
// consider each element except the last
for (int i = 0; i < n - 1; i++)
{
// start from the i'th element until the last element
for (int j = i + 1; j < n; j++)
{
// if the desired sum is found, print it
if (nums[i] + nums[j] == target)
{
printf("Pair found (%d, %d)\n", nums[i], nums[j]);
return;
}
}
}
// we reach here if the pair is not found
printf("Pair not found");
}
"
Gundala tarun,cse2020 V. - "#include
// Naive method to find a pair in an array with a given sum
void findPair(int nums[], int n, int target)
{
// consider each element except the last
for (int i = 0; i < n - 1; i++)
{
// start from the i'th element until the last element
for (int j = i + 1; j < n; j++)
{
// if the desired sum is found, print it
if (nums[i] + nums[j] == target)
{
printf("Pair found (%d, %d)\n", nums[i], nums[j]);
return;
}
}
}
// we reach here if the pair is not found
printf("Pair not found");
}
"See full answer