"C : Okay. So I would want to start with knowing what is the product for which we have to build a recommendation system.
I : This is a photo sharing product.
C : Okay. So is this something on the lines of Instagram?
I : Yes
C : Okay. And are we a new product co or we have some current product built already?
I : You can assume yourself.
C : Okay. Is there any demography or country we are targeting?
I : No, this is a global product
C : Okay. So, the biggest goal of any product recommendation system"
Kartikeya N. - "C : Okay. So I would want to start with knowing what is the product for which we have to build a recommendation system.
I : This is a photo sharing product.
C : Okay. So is this something on the lines of Instagram?
I : Yes
C : Okay. And are we a new product co or we have some current product built already?
I : You can assume yourself.
C : Okay. Is there any demography or country we are targeting?
I : No, this is a global product
C : Okay. So, the biggest goal of any product recommendation system"See full answer
"Even more faster and vectorized version, using np.linalg.norm - to avoid loop and np.argpartition to select lowest k. We dont need to sort whole array - we need to be sure that first k elements are lower than the rest.
import numpy as np
def knn(Xtrain, ytrain, X_new, k):
distances = np.linalg.norm(Xtrain - Xnew, axis=1)
k_indices = np.argpartition(distances, k)[:k] # O(N) selection instead of O(N log N) sort
return int(np.sum(ytrain[kindices]) > k / 2.0)
`"
Dinar M. - "Even more faster and vectorized version, using np.linalg.norm - to avoid loop and np.argpartition to select lowest k. We dont need to sort whole array - we need to be sure that first k elements are lower than the rest.
import numpy as np
def knn(Xtrain, ytrain, X_new, k):
distances = np.linalg.norm(Xtrain - Xnew, axis=1)
k_indices = np.argpartition(distances, k)[:k] # O(N) selection instead of O(N log N) sort
return int(np.sum(ytrain[kindices]) > k / 2.0)
`"See full answer
"The difference between convex and nonconvex functions lies in their mathematical properties and the implications for optimization problems.
Convex Functions:A convex function has a shape where any line segment connecting two points on its graph lies entirely above or on the graph.
This property ensures that any local minimum is also a global minimum, making optimization straightforward and reliable.
Convex functions are critical in machine learning and optimization tasks because of th"
Alan T. - "The difference between convex and nonconvex functions lies in their mathematical properties and the implications for optimization problems.
Convex Functions:A convex function has a shape where any line segment connecting two points on its graph lies entirely above or on the graph.
This property ensures that any local minimum is also a global minimum, making optimization straightforward and reliable.
Convex functions are critical in machine learning and optimization tasks because of th"See full answer
"Overfitting is the condition where your model is giving an unexpectedly higher accuracy because of its training in a small database and not getting exposed to anu different type of database while testing"
Bhavya V. - "Overfitting is the condition where your model is giving an unexpectedly higher accuracy because of its training in a small database and not getting exposed to anu different type of database while testing"See full answer