"To handle the non-uniform sampling, I'd first clean and divide the dataset into chunks of n second interval 'uniform' trajectory data(e.g. 5s or 10s trajectories). This gives us a cleaner trajectory data chunks, T, of format (ship_ID, x, y, z, timestamp) to be formed.
For the system itself, I'd use a generative model, e.g. Variational AutoEncoder (VAE), and train the model's 'encoder' to produce a latent-space representation of input features (x,y,z,timestamp) from T, and it's 'decoder' to pred"
Anonymous Hornet - "To handle the non-uniform sampling, I'd first clean and divide the dataset into chunks of n second interval 'uniform' trajectory data(e.g. 5s or 10s trajectories). This gives us a cleaner trajectory data chunks, T, of format (ship_ID, x, y, z, timestamp) to be formed.
For the system itself, I'd use a generative model, e.g. Variational AutoEncoder (VAE), and train the model's 'encoder' to produce a latent-space representation of input features (x,y,z,timestamp) from T, and it's 'decoder' to pred"See full answer
Data Scientist
System Design
🧠Want an expert answer to a question? Saving questions lets us know what content to make next.