Meta (Facebook) Machine Learning Interview Questions

Review this list of 5 Meta (Facebook) machine learning interview questions and answers verified by hiring managers and candidates.
  • Meta (Facebook) logoAsked at Meta (Facebook) 
    Video answer for 'Design an evaluation framework for ads ranking.'
    +4

    "Designing an evaluation framework for ads ranking is crucial for optimizing the effectiveness and relevance of ads displayed to users. Here's a comprehensive framework that you can use: Define Objectives and Key Performance Indicators (KPIs):** \\Click-Through Rate (CTR):\\ The ratio of clicks to impressions, indicating the effectiveness of an ad in attracting user attention. \\Conversion Rate:\\ The ratio of conversions (e.g., sign-ups, purchases) to clicks, measuring how well"

    Ajay P. - "Designing an evaluation framework for ads ranking is crucial for optimizing the effectiveness and relevance of ads displayed to users. Here's a comprehensive framework that you can use: Define Objectives and Key Performance Indicators (KPIs):** \\Click-Through Rate (CTR):\\ The ratio of clicks to impressions, indicating the effectiveness of an ad in attracting user attention. \\Conversion Rate:\\ The ratio of conversions (e.g., sign-ups, purchases) to clicks, measuring how well"See full answer

    Machine Learning Engineer
    Machine Learning
    +3 more
  • Meta (Facebook) logoAsked at Meta (Facebook) 
    +2

    "C : Okay. So I would want to start with knowing what is the product for which we have to build a recommendation system. I : This is a photo sharing product. C : Okay. So is this something on the lines of Instagram? I : Yes C : Okay. And are we a new product co or we have some current product built already? I : You can assume yourself. C : Okay. Is there any demography or country we are targeting? I : No, this is a global product C : Okay. So, the biggest goal of any product recommendation system"

    Kartikeya N. - "C : Okay. So I would want to start with knowing what is the product for which we have to build a recommendation system. I : This is a photo sharing product. C : Okay. So is this something on the lines of Instagram? I : Yes C : Okay. And are we a new product co or we have some current product built already? I : You can assume yourself. C : Okay. Is there any demography or country we are targeting? I : No, this is a global product C : Okay. So, the biggest goal of any product recommendation system"See full answer

    Machine Learning Engineer
    Machine Learning
    +1 more
  • Meta (Facebook) logoAsked at Meta (Facebook) 

    "At a high level, the core challenge here revolves around building an effective recommendation algorithm for news. News is an inherently diverse category, spanning various topics and catering to a wide array of user types and personas, such as adults, business professionals, general readers, or specific cohorts with unique interests. Consequently, developing a single, one-size-fits-all recommendation algorithm is not feasible. To enhance the personalization of the news recommendation algorithm,"

    Sai vuppalapati M. - "At a high level, the core challenge here revolves around building an effective recommendation algorithm for news. News is an inherently diverse category, spanning various topics and catering to a wide array of user types and personas, such as adults, business professionals, general readers, or specific cohorts with unique interests. Consequently, developing a single, one-size-fits-all recommendation algorithm is not feasible. To enhance the personalization of the news recommendation algorithm,"See full answer

    Machine Learning Engineer
    Machine Learning
    +1 more
  • Meta (Facebook) logoAsked at Meta (Facebook) 
    Video answer for 'Design a fake news detection system.'

    " Functional Requirements Content Ingestion\: Ingest news articles from various sources (websites, social media, etc.). Handle different types of content (text, images, videos). Content Analysis\: Extract and preprocess text from articles. Analyze the content for potential indicators of fake news. Model Training and Prediction\: Use machine learning models to classify content as fake or real. Continuously improve models with new data and f"

    Scott S. - " Functional Requirements Content Ingestion\: Ingest news articles from various sources (websites, social media, etc.). Handle different types of content (text, images, videos). Content Analysis\: Extract and preprocess text from articles. Analyze the content for potential indicators of fake news. Model Training and Prediction\: Use machine learning models to classify content as fake or real. Continuously improve models with new data and f"See full answer

    Technical Program Manager
    Machine Learning
    +3 more
  • Meta (Facebook) logoAsked at Meta (Facebook) 
    Video answer for 'Implement k-means clustering.'
    Machine Learning Engineer
    Machine Learning
    +4 more
  • 🧠 Want an expert answer to a question? Saving questions lets us know what content to make next.

Showing 1-5 of 5