"The central limit theorem tells us that as we repeat the sampling process of an statistic (n > 30), the sampling distribution of that statistic approximates the normal distribution regardless of the original population's distribution. This theorem is useful because it allows us to apply inference with tools that assume normality like t-test, ANOVA, calculate p-values hypothesis testing or regression analysis, calculate confidence intervals, etc."
Lucas G. - "The central limit theorem tells us that as we repeat the sampling process of an statistic (n > 30), the sampling distribution of that statistic approximates the normal distribution regardless of the original population's distribution. This theorem is useful because it allows us to apply inference with tools that assume normality like t-test, ANOVA, calculate p-values hypothesis testing or regression analysis, calculate confidence intervals, etc."See full answer
"Range captures the difference between the highest and lowest value in a data set, while standard deviation measures the variation of elements from the mean. Range is extremely sensitive to outliers, it tells us almost nothing about the distribution of the data, and does not extrapolate to new data (a new value outside the range would invalidate the calculation). Standard deviation, on the other hand, offers us an insight into how closely data is distributed towards the mean, and gives us some pr"
Mark S. - "Range captures the difference between the highest and lowest value in a data set, while standard deviation measures the variation of elements from the mean. Range is extremely sensitive to outliers, it tells us almost nothing about the distribution of the data, and does not extrapolate to new data (a new value outside the range would invalidate the calculation). Standard deviation, on the other hand, offers us an insight into how closely data is distributed towards the mean, and gives us some pr"See full answer