"The distribution of daily search queries per user, as shown in the histogram, can be described as approximately normal (or bell-shaped) with a slight positive skew.
Key Characteristics:
Shape: The distribution is roughly symmetrical around its center, resembling a bell curve. This indicates that most users perform a moderate number of daily search queries.
Central Tendency: The peak of the distribution, representing the highest density of users, appears to be around **8"
Sam A. - "The distribution of daily search queries per user, as shown in the histogram, can be described as approximately normal (or bell-shaped) with a slight positive skew.
Key Characteristics:
Shape: The distribution is roughly symmetrical around its center, resembling a bell curve. This indicates that most users perform a moderate number of daily search queries.
Central Tendency: The peak of the distribution, representing the highest density of users, appears to be around **8"See full answer
"The distribution of daily minutes spent on Facebook per user is heavily right-skewed with a long tail. Most users spend a short amount of time while a smaller segment of heavy users push up the average with 2–3+ hours daily."
Vineet M. - "The distribution of daily minutes spent on Facebook per user is heavily right-skewed with a long tail. Most users spend a short amount of time while a smaller segment of heavy users push up the average with 2–3+ hours daily."See full answer
"I would conduct a sample z-test because we have enough samples and the population variance is known.
H1: average monthly spending per user is $50
H0: average monthly spending per user is greater $50
One-sample z-test
x_bar = $85
mu = $50
s = $20
n = 100
x_bar - mu / (s / sqrt(n) = 17.5
17.5 is the z-score that we will need to associate with its corresponding p-value. However, the z-score is very high,
so the p-value will be very close to zero, which is much less than the standa"
Lucas G. - "I would conduct a sample z-test because we have enough samples and the population variance is known.
H1: average monthly spending per user is $50
H0: average monthly spending per user is greater $50
One-sample z-test
x_bar = $85
mu = $50
s = $20
n = 100
x_bar - mu / (s / sqrt(n) = 17.5
17.5 is the z-score that we will need to associate with its corresponding p-value. However, the z-score is very high,
so the p-value will be very close to zero, which is much less than the standa"See full answer
"Null hypothesis (H0): the coin is fair (unbiased), meaning the probability of flipping a head is 0.5
Alternative (H1): the coin is unfair (biased), meaning the probability of flipping a head is not 0.5
To test this hypothesis, I would calculate a p-value which is the probability of observing a result as extreme as, or more extreme than, what I say in my sample, assuming the null hypothesis is true.
I could use the probability mass function of a binomial random variable to model the coin toss b"
Lucas G. - "Null hypothesis (H0): the coin is fair (unbiased), meaning the probability of flipping a head is 0.5
Alternative (H1): the coin is unfair (biased), meaning the probability of flipping a head is not 0.5
To test this hypothesis, I would calculate a p-value which is the probability of observing a result as extreme as, or more extreme than, what I say in my sample, assuming the null hypothesis is true.
I could use the probability mass function of a binomial random variable to model the coin toss b"See full answer
"The Central Limit Theorem (CLT) says that if you take lots of random samples from any population, the sample means will be roughly normally distributed when the sample size is big enough, even if the population itself isn’t normal.
Why it’s useful: 1. Makes it easy to use normal distribution formulas for probabilities. 2. Allows us to create confidence intervals and do hypothesis tests even when the original data isn’t normal."
Madina A. - "The Central Limit Theorem (CLT) says that if you take lots of random samples from any population, the sample means will be roughly normally distributed when the sample size is big enough, even if the population itself isn’t normal.
Why it’s useful: 1. Makes it easy to use normal distribution formulas for probabilities. 2. Allows us to create confidence intervals and do hypothesis tests even when the original data isn’t normal."See full answer
"A confidence interval gives you a range of values where you can be reasonably sure the true value of something lies. It helps us understand the uncertainty around an estimate we've measured from a sample of data. Typically, confidence intervals are set at the 95% confidence level. For example, A/B test results show that variant B has a CTR of 10.5% and its confidence intervals are [9.8%, 11.2%], this means that based on our sampled data, we are 95% confident that the true avg CTR for variant B a"
Lucas G. - "A confidence interval gives you a range of values where you can be reasonably sure the true value of something lies. It helps us understand the uncertainty around an estimate we've measured from a sample of data. Typically, confidence intervals are set at the 95% confidence level. For example, A/B test results show that variant B has a CTR of 10.5% and its confidence intervals are [9.8%, 11.2%], this means that based on our sampled data, we are 95% confident that the true avg CTR for variant B a"See full answer
"I'd recommend to adjust p-values because of the increased chance of type I errors when conducting a large number of hypothesis. My recommended adjustment approach would be the Benjamini-Hochberg (BH) over the Bonferroni because BH strikes a balance between controlling for false positive and maintaining statistical power whereas Bonferroni is overly conservative while still controlling for false positives, it leads to a higher chance of missing true effects (high type II error)."
Lucas G. - "I'd recommend to adjust p-values because of the increased chance of type I errors when conducting a large number of hypothesis. My recommended adjustment approach would be the Benjamini-Hochberg (BH) over the Bonferroni because BH strikes a balance between controlling for false positive and maintaining statistical power whereas Bonferroni is overly conservative while still controlling for false positives, it leads to a higher chance of missing true effects (high type II error)."See full answer